DEPARTMENT OF BOTANY ELECTIVE COURSES OFFERED

Course No.	Name of the Course	Credit	Remark
	Semester I		
BOT-VC-101	Conservation of Plant Diversity	04	Value added course (Credited)
	Semester II		
BOT-VNC-201	Art of Bonsai	00	Value added course (Non Credited)
	Semester III		
BOT-EL-301A	Applied Botany-I	04	Elective
BOT-EL-301B	Analytical Techniques and Computer Applications	04	
BOT-EL-302A	Mushroom Cultivation	04	Elective
BOT-EL-302B	Ecotourism	04	
BOT-IER-301	Plant Resource Utilization	04	Interdepartmental Course
	Semester IV		
BOT-EL-401A	Applied Botany-II	04	Elective
BOT-EL-401B	Biotechnology and Human Welfare	04	
BOT-EL-402A	Plant Disease Management	04	Elective
BOT-EL-402B	Gardening and Landscaping	04	
BOT-IRA-401	Natural Resources and their Conservation	04	Intradepartmental Course

BOT	= Botany
BOT-VC	= Value added course (Credited)
BOT-VNC	= Value added course (Non Credited)
BOT-EL	= Elective Course
BOT-IER	= Interdepartmental Course
BOT-IRA	= Intradepartmental Course

Department of Botany Semester I BOT-VC-101: Conservation of Plant Diversity 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Get an overview of the significance of plant diversity, and an insight into global strategies for developing workable models for its exploration and conservation
- Develop an understanding of the importance of national parks, biosphere reserves and sanctuaries
- Understand the role played by government and non-government organizations in conserving biodiversity

	UNIT – I
\triangleright	Plant diversity concepts, its significance and application, Current conservation Status and need
	for conservation, Conservation Status Assessment of threatened species
\succ	Biodiversity in the World: genetic diversity, species diversity, ecosystem diversity
	UNIT – II
\triangleright	Biodiversity hotspots in India and the World, their role in conservation, Red list index
\triangleright	Conservation status by IUCN red list category and definition (DD, LC, NT, VU, EN, CR, EW
	and EX)
\triangleright	Climate change and biodiversity
	UNIT – III
\succ	Factors affecting biodiversity (biotic and abiotic), Reason for conservation deterioration
	(degradation of ecosystem, loss of mobility, expansion of vegetation, international trade and
	artificial conservation site), Types of conservation (preventive, remedial and restoration)
\succ	Role of tissue culture in plant diversity and its significance
	UNIT – IV
\triangleright	In situ conservation - Protected areas, National parks, Wildlife sanctuaries, Biosphere reserves,
	Sacred forests
\triangleright	Ex situ conservation- Seed banks, Sacred groves, Botanical gardens
\succ	Cryopreservation, Natural reserves, Marine parks, Gene banks
	UNIT – V
\checkmark	Global strategy for plant conservation (GSPC), Model for plant development conservation and
	sustainable use
\succ	Conservation programmes - Non-governmental organizations (NGOs), Governmental bodies -
	UNEP, DST, MoEF, FSI, CPCB, NMPB, AYUSH

- 1. Plant Conservation and Biodiversity Editors: Hawksworth, David L., Bull, Alan T. (Springer)
- 2. Biological Diversity and Its Conservation, Sharma Dushyant Kumar, Daya Publishing House
- 3. A Handbook of Plant Resource Utilization and Conservation, Bijan Bihari Dutta
- 4. Biodiversity: Concepts and Conservation, B.B. Hosetti, S. Ramkrishna, Aavishkar Publishers, Distributors, Jaipur

Department of Botany Semester II BOT-VNC-201: Art of Bonsai

Course Outcomes:

After completion of the Course the student will:

- Get an overview of the art of Bonsai and its applied aspect, at the same time acquire basic skills and aesthetics needed to create a beautiful bonsai
- Develop an understanding of the importance of bonsai

UNIT - I

Introduction of Bonsai, Evolution of Bonsai, Early versions, Classical period, History of Bonsai in China, History of Bonsai in Japan, History of Bonsai in the West, Modern bonsai.

$\mathbf{UNIT} - \mathbf{II}$

Bonsai Aesthetics: General aesthetic principles- no trace of the artist, Visual balance, Proportion among elements, Flexibility of the rules, General aesthetic guidelines- Gravitas, Miniaturization, Lignifications, Asymmetry, Leaf Reduction, Nebari, Ramification, Deadwood, Curvature.

UNIT – III

Styles of Bonsai: Special Characteristics of Bonsai, concept of styles, catalogue of styles, common styles: Formal upright, Informal upright, Slant, Cascade, Semi-cascade, other styles.

UNIT – IV

Preparation of Bonsai: Conditions required, Rules for Bonsai making: For trunk, For Branches, Plants suitable for Bonsai making, Cultivation, Agrotechniques for Bonsai: Propagation, Season, Potting and repotting, after care, Containers, Planting media.

UNIT – V

Importance of Bonsai: Scientific Benefits, Spiritual Benefits, Ornamental Value, Economic importance, Bonsai skills.

- 1. Bonsai Basics, Step-by-Step Guide to Growing, Training & General Care by Christian Pessey and Rémy Samson Sterling Pub. (1993).
- 2. Bonsai; 101 Essential tips by Harry Tomlinson and Carol Watson DK Pub. (2003).
- 3. The Bonsai Handbook by David Prescott and Colin Lewis New Holland, 2003
- 4. Indoor Bonsai by Paul Lesniewicz Blandford Press (1986)
- 5. Bonsai, a beginners guide by Bonsai Empire (2014)

Department of Botany Semester III BOT-EL-301A: Applied Botany-I 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Understand the impact of microorganisms on mankind and the innumerable ways in which they serve us
- Learn about the industrial importance of bacteria, fungi, and algae and appreciate their beneficial role in medicine, industry and agriculture
- Learn about the concept of IPM and necessity to reduce usage of chemical pesticides
- Understand the economic importance of Bryophytes, Pteridophytes and Lichens

Unit I	
 Fermented food products, probiotics 	
Industrial applications of microbes: organic acids, amino acids, vitamins, enzymes and	
extremozymes; Immobilized enzyme technology	
Biopesticides and biofertilizers	
Microbial leaching and bioremediation	
Unit–II	
Medicinal fungi	
SCP and Mushroom cultivation	
> Mycotoxins	
Integrated Pest Management	
Unit–III	
Algae as food, fodder, aquaculture feed; commercial production of agar-agar, algin and	
alginate; algal-based fuels	
Role of algae in soil fertility, land reclamation, sewage disposal	
Medicinal importance of algae; Diatomaceous earth and its uses	
Culture of algae	
Unit–IV	
Lichens as pioneer colonizers	
Role of Lichens in monitoring pollution	
Lichens as food and fodder	
Therapeutic applications of lichens	
Lichen synthesis	
Unit–V	
Use of Bryophytes in pollution studies	
Economic importance of Bryophytes in medicine, horticulture, household goods, furnishing and construction	
 Pteridophytes in ethno-medicine, as food and fodder, and as ornamentals 	
 Role of Pteridophytes in phytoremediation 	
Suggested Readings:	

- 1. Basic Biotechnology, C. Ratledge and B. Kristiansen (Eds), 3rd edition, 2007, Cambridge University Press.
- 2. Plant Biotechnology, P.K. Gupta, 2nd edition, Rastogi Publications
- 3. A Textbook of Biotechnology, R.C. Dubey, 5th revised edition, 2014, S Chand
- 4. Crueger's Biotechnology-A textbook of Industrial Microbiology, V.B. Rastogi and K.R. Aneja, 3rd edition, 2017, Scientific International Pvt. Ltd.

Department of Botany Semester III BOT-EL-301B: Analytical Techniques and Computer Applications 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Understand the principles and applications of several important analytical techniques used in the study of bio-molecules
- Acquire a hands-on knowledge of computers and related programs applicable to various other courses

Unit-I

- Sand culture/water culture and controlled soil culture techniques
- Tracer techniques: Detection and measurement of isotopes and applications
- > Microtomy

Unit – II

- > Centrifugation and ultracentrifugation techniques and their applications.
- > Chromatography- Paper, TLC, Column, Gel Filtration, Affinity, Ion Exchange, HPLC, GC
- Flow cytometry: Principles and Applications

Unit – III

- Photometry: Colorimetry and Spectrophotometry (UV-visible). Fluorescence Spectrometry, Chemiluminescence Spectrometry, Atomic Absorption/Emission Spectrometry
- Basic features and principles of IR, Raman, Mass, NMR, ESR.

Unit – IV

- Electrophoretic techniques and their applications.
- Amino acid analysis and protein sequencing.
- Applications and detection of proteins and nucleic acids (Western Transfers and Immunoblots and Southern blot), MAB technology.
- DNA chip technology and Microarray

Unit – V

- Brief introduction to computers and their applications
- MS Office (MS Word, MS Excel, MS Power Point, MS Access)
- ➢ Graphics, Operating System: Windows, dBASE, Coral/Photoshop

- 1. E.J. Hewitt (1966).Sand and water culture methods used in the study of plant nutrition. Commonwealth Agricultural Bureaux, FarnhamRoyl. Bucks, England.
- GyörgyHegyi, JózsefKardos, MihályKovács, AndrásMálnási-Csizmadia, László Nyitray, GáborPál, László Radnai, Attila Reményi, IstvánVenekei (2013). Introduction to Practical Biochemistry, ELTE Faculty of Natural Sciences, Institute of Biology
- 3. K. Wilson, J. Walker (2010). Principles and Techniques of Biochemistry and Molecular Biology, Seventh Edition, Cambridge University Press, NewYork, USA.
- 4. Phillip Sheeler and Donald E Bianchi (2006). Cell and Molecular Biology, John Wiley and Sons, Inc. U.K.
- 5. R. Boyer (2000). Modern Experimental Biochemistry, Pearson Education, Asia
- 6. S.E. Ruzin (1999). Plant Microtechnique and Microscopy, Oxford University Press, New York
- 7. S.K. Sawhney, Randhir Singh (2000). Introductory Practical Biochemistry, Narosa Publishing House, New Delhi.

Department of Botany Semester III BOT-EL-302A: Mushroom Cultivation 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Get a basic understanding of the cultivation process of mushrooms
- Understand health benefits of consuming mushrooms
- Understand the economic importance of mushrooms
- Unit -I > Introduction to mushrooms and historical perspectives > Classification of mushrooms, Nutritional and dietary values of mushrooms as source of proteins, carbohydrates, fibres, vitamins and minerals, therapeutic properties, mushroom collections from field. Unit-II > Mushroom cultivation techniques: Erections of mushroom culture sheds and maintenance (tools, equipment and prerequisites). > Fungal Isolation techniques, preparation of mother culture- pure culture, selection of stock, spawn production – mother spawn production. Unit-III > Multiplication of spawn: Precautions, characters, and storage of spawn Substrate production, culturing of mushrooms, Harvesting, post-harvesting processes, and key machinery and equipment required. **Unit-IV** Cultivation techniques for commercially viable mushrooms - paddy straw mushroom, button mushroom and milky mushroom - spawning, substrate preparation, growth, packing, and maintenance of suitable environmental conditions. Factors influencing mushroom cultivation and harvesting. Mushroom delights. Unit-V > Pests management during mushroom cultivation
- Diseases and competitor moulds of mushrooms and their management: Dry bubble disease *Verticillium fungicola*, wet bubble disease *Mycogoneperniciosa*, Cobweb *Cladobotryumdendroides*, and Green mould *Trichoderma* sp. Flies and mites

- 1. Mushroom Cultivation : A beginner guide by Nailoke Pauline Kadhila-Muandingi 2nd Edition
- 2. The Essential Guide to Cultivating Mushrooms by Stephen Russell, Storey Publishing, LLC
- 3. Mushroom Cultivation Technology by YellaRathaiah
- 4. Mushroom cultivation in India by V.P. Sharma, Daya Books Publication.
- 5. Mushroom Cultivation by V. Kumaresan, Saras Publication; 1st edition

Department of Botany Semester III BOT-EL-302B: Ecotourism 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will acquire:

- Basic knowledge of principles of Ecotourism and its significance.
- Basic understanding of ecological importance of Ecotourism.
- Knowledge about conservation of fragile natural environment.

Unit -I

- Ecotourism: Definition, principles of ecotourism, benefits of ecotourism
- Role of ecotourism in sustainable development, Economic and livelihood security for locals and forest dwellers

Unit-II

- > Sustainable ecotourism, characteristics and principles of sustainable ecotourism
- Relationship between ecotourism and sustainable tourism

Unit-III

- National and state agencies involved in promotion of ecotourism, concerns of stakeholders in promoting tourism in ecologically sensitive area
- > Ecotourism in India with special reference to ecotourism promoting state in India

Unit-IV

- Destinations for ecotourism in India and ecological importance of these ecotourism destinations in India
- Role of non-governmental organizations in educating ecotourists about environmental sensitive issues related to ecotourism destinations

Unit-V

- International ecotourism
- Risks benefits and disadvantages of ecotourism

- 1. Ralf Buckley-Environmental Impacts of Ecotourism.
- 2. Seema Bhatt and Syed Liyakhat- Ecotourism Development in India: Communities, Capital and Conservation.
- 3. Martha Honey-Ecotourism and sustainable development, David Fennell-Ecotourism Third Edition

Department of Botany Semester III BOT-IER-301: Plant Resource Utilization 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Learn about the therapeutic applications of plants, and important cash crops and plantation crops
- Understand the benefits of orchards and learn several horticulture and floriculture techniques
- Appreciate the importance of organic farming, vermicomposting, biofertilizers and biopesticides

	Unit-I
\triangleright	Plants in Homeopathy (plant parts and uses)
\triangleright	Plants in Ayurveda (plant parts and uses)
\triangleright	Plants in Allopathy (plant parts and active principals, uses)
	Ethnomedicine
	Unit – II
	Vegetative propagation, Gutti, layering, grafting
	Micropropagation & its Industry
\triangleright	Seed propagation & its limitation
\triangleright	Plant Quarantine
	Unit – III
\triangleright	Commercial floriculture: scope & importance in India.
\triangleright	Techniques of producing ornamental plants like Rose, Marigold, Chrysanthemum, Orchid,
	Gladiolus etc.
\triangleright	Orchards: Importance, objectives, merits and demerits
	Horticultural crops and their nutritive value
	Unit – IV
\triangleright	Vermicomposting, green manuring
\triangleright	Biofertilizers and use of biocontrol agents
\triangleright	Biopesticides, pheromones
	Organic food and human health
	Unit – V
\blacktriangleright	Plantation crops: Scope and importance
\triangleright	Plantation crops: Planting system and methods
\triangleright	Packaging & marketing of some vegetable crops and cash crops (Coffee, Tea, Sugar, Banana)
\triangleright	Export and import potential, uses & Industrial importance of Plantation crops

- 1. Lyndy J. McGaw et.al Medicinal Plants for holistic healing.
- 2. Bhani Ram, MamtaDail and Anil Sharma. Plantation Crops.
- 3. Roy A. Larson- Introduction to Floriculture.
- 4. S.Prashad- Commercial Floricuture.
- 5. Dr. R. K. Bishwas- Organic farming in India. (N D publication).
- 6. Bijan Bihari Dutta-A Handbook of Plant Resource Utilization and Conservation

Department of Botany Semester IV BOT-EL-401A: Applied Botany-II 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

• Appreciate the economical aspect of Botany, with the use of plants as a source of food, fibre, timber, oils, beverages and medicines

	UNIT – I
\triangleright	Gymnosperms in forestry
	Gymnosperms as a source of wood, resins, tannins, fibers, medicines houseplants, essential oils, fatty oils, decoration and others
	UNIT – II
\triangleright	An introduction to plant utilization- Cereals (Wheat, Rice and Maize) and their domestication, Pseudocereals
	Pulses and their utility, vegetables, fruits (common name, vernacular name and plant parts) and ornamental plants.
	UNIT – III
\checkmark	Timber yielding plants (Sheesham, Teak, Chir and Mango) their seasoning and utility
\triangleright	Rubber yielding plants and its processing; gums, resins and dye yielding plants
	UNIT – IV
\succ	Extraction and utility of fibers (Cotton, Jute, Coir and Paper making fibers)
	Oils- their classification, extraction and importance (Mustard, coconut, groundnut, sunflower and essential oils)
	UNIT – V
\triangleright	Beverages: Classification, utility and processing (Tea, coffee and cocoa)
Þ	Medicinal plants: Petrocrops Fumatories and Masticatories

Medicinal plants; Petrocrops, Fumatories and Masticatories

- 1. Economic Botany: Principles and Practices by G.E. Wickens
- 2. Economic Botany: A Comprehensive Study by S. L. Kochhar.
- 3. Plants in our World: Economic Botany by Beryl Simpson & Molly Ogorzaly
- 4. Textbook of Economic Botany by V. Verma
- 5. Economic Botany by B. C. Pandey
- 6. Economic Botany by P. C. Das
- 7. Economic Botany: Useful plants and products by W. W. Robbins

Department of Botany Semester IV **BOT-EL-401B: Biotechnology and Human Welfare** 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Learn about culturing plants through in vitro micropropagation techniques •
- Acquire knowledge about the techniques in molecular biology for creation of transgenic plants for disease resistance and crop improvement
- Learn about biotechnological approaches in pollution control and improvement of soil fertility

Unit-I

- \geq Plant Cell and Tissue culture: Introduction, concept of cellular differentiation, totipotency
- Culture media and laboratory requirements
- Micropropagation-Organogenesis and embryogenesis, Bioreactors, Embryo rescue
- ► Endosperm culture, nucellus culture
- Somaclonal variations: applications and reasons for generation
- > Protoplast culture, regeneration and somatic hybridization, Cybrids
- Production and uses of haploids
- Applications of plant tissue culture

Unit – II

- Cloning vectors (plasmid and bacteriophage vectors, cosmids BAC and YACs) \triangleright
- Enzymes (restriction endonucleases, polymerases, reverse transcriptase, alkaline
- phosphatase, polynucleotide kinase, Ligases, terminal transferases)
- > DNA cloning: Preparation of plasmid DNA, Restriction digestion and electrophoresis, ligation, transformation and analysis of recombinants.
- > Gene libraries and cDNA libraries, Polymerase chain reaction
- > Methods of direct and indirect gene transfer in plants, Agrobacterium, Ti and Ri Plasmids.

Unit – III

- > DNA fingerprinting, DNA Synthesis, DNA Sequencing.
- > Application of genetic engineering: Transgenic plants for pest and disease resistance, abiotic stress tolerance, production of useful products.
- > Applications of genetically engineered bacteria in crop production and protection

Unit – IV

- Biodegradation of xenobiotics and toxic wastes, production of chemicals and fuels \geq \triangleright
 - Biotechnology in pollution control and phytoremediation
- > Restoration of degraded land, microbes for improving soil fertility
- > Biopesticides and integrated pest management, Biofertilizers, Organic farming

Unit – V

- Introduction to Genomics and Proteomics
- > Molecular markers
- **Bioinformatics** -general outline \triangleright
- Intellectual Property rights and Protection-brief introduction \geq
- Patenting of Biological material and its implications \geq
- > Ethics in biotechnological research

- 1. C.A. Cullis (2004) Plant Genomics and Proteomics, A John Wiley & Sons, Inc., Publication, Hoboken, New Jersey. USA
- 2. JH Dodds, L.W. Roberts (1985) Experiments in Plant tissue Culture. Cambridge University Press, New York, USA
- 3. JW Dale, M. von Schanz (2007) From Genes to Genomes, concepts and applications of DNA technology. John Wiley and Sons, Ltd. West Sussex, England
- 4. K. Wilson, J. Walker (2010) Principles and Techniques of Biochemistry and Molecular Biology, Seventh Edition, Cambridge University Press, NewYork, USA.
- 5. K-H Neumann, A. Kumar, J. Imani (2009) Plant Cell and Tissue Culture A Tool in Biotechnology, Basics and Application. Springer-Verlag, Berlin, Germany
- 6. L. Comai, J.Katz, P.Mallick, (Eds.) Proteomics Methods and Protocols, Springer
- 7. Lodish H, Berk A, Zipursky SL, Matsudaira P, Baltimore D, Darnell JE (2000) Molecular Cell Biology, W H Freeman and Company, USA.
- 8. NL Craig, O Cohen-Fix, R Green, C. Greider, G. Storz, C. Wolberger (2014) Molecular Biology: principles of genome function. Oxford University Press, UK.
- 9. Richard M. Twyman, Advanced Molecular Biology: A Concise Reference , BIOS Scientific Publisher Ltd
- 10. Timothy Palzkill (2002) PROTEOMICS, Kluwer Academic Publishers, New York

Department of Botany Semester IV BOT-EL-402A: Plant Disease Management 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Develops a basic understanding of the economic and aesthetic damage caused by plant diseases
- Understand and identify diseases and their potential management methods
- Develop significant knowledge of IPM in order to recognize it's the components for an integrated management plan

Unit -I		
History of plant pathology and early significant plant diseases, causes of infectious		
diseases, losses caused by plant disease, host range of pathogens, plant disease		
epidemiology, effect of pathogens on the host plant, development of epidemics		
Unit-II		
Principles of plant disease management: Exclusion, quarantines and certifications,		
avoidance, eradication, host resistance		
Unit-III		
Plant disease management: Cultural methods, crop rotation, traps and mulches,		
sanitation, biological methods, chemical methods, integrated pest management (IPM)		
Unit-IV		
Management of viral diseases: control of vectors, cross protection, pathogen-derived		
resistance, induced resistance, genetically engineered resistant plants		
Unit-V		
Management of fungal/bacterial diseases on Rice, Wheat, Potato, Legumes, Mustard		

- 1. Hadidi A, Khetarpal RK, Koganezawa H (Eds), Plant virus disease control, The American Phytopathological Society, 1998, USA
- 2. Agrios GN, Plant Pathology, 5th edition, Elsevier
- 3. Ciancio A, Mukerji, KG (Eds), General Concepts in Integrated Pest and Disease Management, 2010, Springer
- 4. Sharma RC, Sharma JN, Integrated plant disease management, 2005, Scientific Publishers Journal

Department of Botany Semester IV BOT-EL-402B: Gardening and Landscaping 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Develop a keen interest in Gardening and Landscaping, an applied aspect of Botany, and acquire the basic skills and aesthetics needed to create a beautiful and green environment
- Assess the role of plants in the well being of the society and appreciate the joy of interacting with the mother earth

Unit -I

- Scope and objectives of gardening, style of gardens: Formal, Informal, Types of gardens: English, Mughal and Japanese.
- Components of garden, Planning of outdoor gardens: Small, Residential, Larger Home Garden, Roof Garden, Terrace Garden, Children's garden, School and Institutional Garden, Park, Industrial garden, Housing complex, Indoor gardening

Unit-II

- Garden Features and Ornamentation: Water, Garden pool, Stream, Waterfall, Fountain, Rocks, Roads, Walks, Pavements and Steps, Walls fences and Gates, Hedges, Edges, Arches, Pergolas, Screens and Bridges
- Lawns, Flower beds, Borders, Carpet bedding, Shrubberies, Plant containers & raised beds, Statues, Towers, Plant stands, Green House, Conservatories, Night-lights

Unit-III

- Specialized Gardens: Herb garden, Rose garden, Bog garden, Sunken garden
- Topiary garden, Kitchen garden, Paved garden, Dish garden, Rock garden, Terrace garden, Water garden & Bottle garden (Terrarium).

Unit-IV

- Principles of landscape design, elements, planning and layout
- > Plant material for landscaping, symbols and tools

Unit-V

- Landscape design for specific areas: residence, commercial buildings, educational institutes and hotels
- Computer applications in landscape design

- 1. Peter McHoy- Garden planning & garden design. (Southwater Publication).
- 2. Deborah L. Martin- Rodale's basic gardening. (Rodale Books Publication).
- **3.** Brian Capon- Botany for Gardeners. (3rd edition)
- 4. Harry Tomlinson- A complete book of Bonsai.
- 5. Elizabeth Barlow Rogers- Landscape Design: A cultural and Architectural History.
- 6. Chris Young- Encyclopedia of Landscape design. (DK Publication).
- 7. Anupam Tiwari, Anil K. Singh *et.al* Computer aided designing for Landscape gardening. Global journal of pharmaceutical research 5(5):386-388.
- 8. Stephen Erwin and Hope Nasdrouck- Landscape Modelling.

Department of Botany Semester IV BOT-IRA-401: Natural Resources and their Conservation 4 Credits/40 Hours

Course Outcomes:

After completion of the Course the student will:

- Develop a basic understanding of the limited natural resources and hence the need for their conservation and sustainable use
- Learn about the various types of soils and methods for reclamation of problem soils
- Gather information on various sources of energy and generation of energy from waste

	Unit-I
\triangleright	Atmosphere: Characteristics of troposphere, stratosphere, mesosphere, thermosphere and
	exosphere.
\succ	Lithosphere: Basic concepts
	Hydrosphere: Structure and physico-chemical properties
\triangleright	Mineral source management: formation, occurrence, exploitation& conservation
	Unit – II
\succ	Water resources and their integrated management
\succ	Watershed development, rainwater harvesting
\succ	Agricultural practices in India. Exploitation of agricultural land
\succ	Wasteland development- concept, scope and strategies
	Unit – III
\succ	Energy: Non-renewable (conventional) sources of energy
\triangleright	Thermal power, hydro-energy, atomic, nuclear energy and fossil fuel
\triangleright	Energy : Renewable (non- conventional)
\succ	Biogas and power generation from solid waste conservation
	Unit – IV
\triangleright	Soils: Origin and development of soil, soils of India
\succ	Soil profile
\succ	Physical, chemical and biological properties of soils
\triangleright	Characteristics of problem soils
Unit – V	
\checkmark	Conservation of rare and endangered animal species, national parks and wildlife sanctuaries of
	India.
\triangleright	Soil Conservation
\triangleright	Water conservation strategies in India
\triangleright	Energy conservation and storage

- 1. Nyle Brady and Ray R. Weil- The nature and properties of Soils.
- 2. P.D. Sharma- Ecology and Environment. (Rastogi Publication).
- **3.** Shankar- Environment (6th edition).
- 4. Tushar Ghosh, Prelas et. al. Energy Resources and systems. (Springer books).